Peaked encoding of relative luminance in macaque areas V1 and V2.
نویسندگان
چکیده
It is widely presumed that throughout the primate visual pathway neurons encode the relative luminance of objects (at a given light adaptation level) using two classes of monotonic function, one positively and the other negatively sloped. Based on computational considerations, we hypothesized that early visual cortex also contains neurons preferring intermediate relative luminance values. We tested this hypothesis by recording from single neurons in areas V1 and V2 of alert, fixating macaque monkeys during presentation of a large, spatially uniform patch oscillating slowly in luminance and surrounded by a static texture background. A substantial subset of neurons responsive to such low spatial frequency luminance stimuli in both areas exhibited prominent and statistically reliable response peaks to intermediate rather than minimal or maximal luminance values. When presented with static patches of different luminance but of the same spatial configuration, most neurons tested retained a preference for intermediate relative luminance. Control experiments using luminance modulation at multiple low temporal frequencies or reduced amplitude indicate that in the slow luminance-oscillating paradigm, responses were more strongly modulated by the luminance level than the rate of luminance change. These results strongly support our hypothesis and reveal a striking cortical transformation of luminance-related information that may contribute to the perception of surface brightness and lightness. In addition, we tested many luminance-sensitive neurons with large chromatic patches oscillating slowly in luminance. Many cells, including the gray-preferring neurons, exhibited strong color preferences, suggesting a role of luminance-sensitive cells in encoding information in three-dimensional color space.
منابع مشابه
Peaked Encoding of Relative Luminance in Macaque Areas
It is widely presumed that throughout the primate visual pathway neurons encode the relative luminance of objects (at a given light adaptation level) using two classes of monotonic function, one positively and the other negatively sloped. Based on computational considerations, we hypothesized that early visual cortex also contains neurons preferring intermediate relative luminance values. We te...
متن کاملOptical imaging of contrast response in Macaque monkey V1 and V2.
Our studies on brightness information processing in Macaque monkey visual cortex suggest that the thin stripes in the secondary visual area (V2) are preferentially activated by brightness stimuli (such as full field luminance modulation and illusory edge-induced brightness modulation). To further examine this possibility, we used intrinsic signal optical imaging to examine contrast response of ...
متن کاملOrientation-Cue Invariant Population Responses to Contrast-Modulated and Phase-Reversed Contour Stimuli in Macaque V1 and V2
Visual scenes can be readily decomposed into a variety of oriented components, the processing of which is vital for object segregation and recognition. In primate V1 and V2, most neurons have small spatio-temporal receptive fields responding selectively to oriented luminance contours (first order), while only a subgroup of neurons signal non-luminance defined contours (second order). So how is ...
متن کاملColor architecture in alert macaque cortex revealed by FMRI.
The contribution that different brain areas make to primate color vision, especially in the macaque, is debated. Here we used functional magnetic resonance imaging in the alert macaque, giving a whole brain perspective of color processing in the healthy brain. We identified color-biased and luminance-biased activity and color-afterimage activity. Color-biased activity was found in V1, V2, and p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 93 3 شماره
صفحات -
تاریخ انتشار 2005